What resveratrol promises Longevinex® delivers



  • A unifying theory of aging, References

    Jan 03 2007

    Longevinex® is more than resveratrol


    1. www.grg.org/resources/TheScientist.htm
    2. Lane MA, Ingram DK, Roth GS, The Serious Search for an Anti-Aging Pill, Scientific American August 2002.
    3. Social Security Administration. March 31,2000.
    4. Baur JA, et al, Resveratrol improves health and survival of mice on a high-calorie diet. Nature.444 (7117):337-42, 2006.
    5. Ledda M, et al, Amount and distribution of lipofuscin in nerve and satellite cells from spinal ganglia of young adult and aged rabbits. Journal Submicroscopic. Cytology Pathology. 31: 237–246, 1999.
    6. Barton JC, et al, Juvenile hemochromatosis in the southeastern United States: a report of seven cases in two kinships. Blood Cells Molecular Disease 29: 104-15, 2002.
    7. van der Schaft TL, et al, Is basal laminar deposit unique for age-related macular degeneration? Archives Ophthalmology 109: 420-25, 1991.
    8. De Jong P, Age-related macular degeneration. New England Journal of Medicine 355: 1474-85, 2006.
    9. Aslan D, et al, Early-onset drusen in a girl with bloom syndrome; probably clinical importance of an ocular manifestation. Journal Pediatric Hematology Oncology 26: 256-57, 2004.
    10. Baker PB, Baba N, Boesel CP, Cardiovascular abnormalities in progeria. Case report and review of the literature. Archives Pathology Laboratory Medicine 105: 384-86, 1981.
    11. Hallberg, L.; Hulthen, L Iron stores in man in relation to diet and iron requirements. European Journal Clinical Nutrition 52: 623, 1998.
    12. Anderson HC, Mechanisms of pathologic calcification. Rheumatic Diseases Clinics North America 14: 303-19, 1988.
    13. Blumenthal HT, Lansing AI and Wheeler PA, Calcification of the media of the human aorta and its relation to intimal arteriosclerosis, ageing and disease, American Journal Pathology 20, 665–679, 1944.
    14. Atkinson J, Arterial calcification. Mechanisms, consequences and animal models, Pathology Biol. (Paris) 47: 677–684, 1999.
    15. Hak AE, et al, Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arteriosclerosis Thrombosis Vascular Biology 20: 1926-31, 2000.
    16. Kurosu H, et al, Suppression of Aging in Mice by the Hormone Klotho, Science, 309(5742):1829-33, 2005.
    17. Kuro-o M, Matsumura Y, et al, Mutation of the mouse klotho gene leads to a syndrome resembling ageing, Nature 390: 45–51, 1997.
    18. Saito K, et al, Iron chelation and a free radical scavenger suppress angiotensin II-induced downregulation of klotho, an anti-aging gene, in rat. FEBS Letters 551(1-3):58-62, 2003.
    19. Poeggeler B, Melatonin, aging, and age-releated diseases: perspectives for prevention, intervention and therapy. Endocrine 27: 201-12, 2005.
    20. Humbert W, Pevet P, The pineal gland of the aging rat: calcium localization and variation in the number of pinealocytes. Journal Pineal Research 18: 32-40, 1995.
    21. Humbert W, Pevet P, Calcium content and concretions of pineal glands of young and old rats. A scanning and x-ray microanalytical study. Cell Tissue Research 263: 593-96, 1991.
    22. Lesnikov VA, Pierpaoli W, Pineal cross-transplantation (old-to-young and vice versa) as evidence for an endogenous “aging clock.” Annals New York Academy Sciences 719: 456-60, 1994.
    23. Karasek M, Melatonin, human aging and age-related diseases. Experimental Gerontology 39: 1723-29, 2004.
    24. Kunz D, et al, On pineal calcification and its relation to subjective sleep perception: a hypothesis-driven pilot study. Phychiatry Research 82:187-91, 1998.
    25. Kloeden PE, Rossler R, Rossler OE, Does a centralized clock for ageing exist? Gerontology 36: 314-22, 1990.
    26. Poeggeler B, Melatonin, aging, and age-related diseases: perspectives for prevention, intervention and therapy. Endocrine 27: 201-12, 2005.
    27. Schmid HA, et al, Calcium, calcification, and melatonin biosynthesis in the human pineal gland: a postmortem study into age-related factors. Journal Pineal Research 16: 178-83, 1994.
    28. Kunz D, A new concept for melatonin deficit: on pineal calcification and melatonin excretion. Neuropsychopharmacology 21:765-72, 1999.
    29. Winkler P, Helmke K, Age-related incidence of pineal gland calcification in children: a roentgenological study of 1,044 skull films and a review of the literature. Journal Pineal Research 4: 247-52, 1987.
    30. Helmke K, Winkler P, Incidence of pineal calcification in the first 18 years of life. Rofo 144:221-6, 1986.
    31. Cook CI, Yu BP, Iron accumulation in aging: modulation by dietary restriction. Mechanisms Ageing & Development 102: 1, 1998.
    32. .Massie HR, Aiello VR, Williams TR, Iron accumulation during development and ageing of Drosophila. Mechanisms of Ageing & Development 29: 215-20, 1985.
    33. Massie HR, Aiello VR, Williams TR, Inhibition of iron absorption prolongs the life span of Drosophila. Mechanisms Ageing & Development. 67: 227-37, 1993.
    34. Psyrogiannis A, Relative iron “overload” in offspring of patients with type 2 diabetes mellitus: a new component in the conundrum of insulin resistance syndrome? Hormones 2(3):161-8, 2003.
    35. Zecca L, et al, Iron, brain ageing and neurodegenerative disorders 5: 863-73, 2004.
    36. Tanguy S, et al, Ageing exacerbates the cardiotoxicity of hydrogen peroxide through the Fenton reaction in rats. Mechanisms Ageing Development 124: 229-35, 2003.
    37. Killilea DW, et al, Iron accumulation during cellular senescence. Annals New York Academy Sciences 1019: 365-69, 2004.
    38. Terman A, Brunk UT, Oxidative stress, accumulation of biological garbage and aging. Antioxidant Redox Signaling 8: 197-204, 2006.
    39. Amagai Y, et al, Age at menopause and mortality in Japan: the Jichi Medical School Cohort Study. Journal Epidemiology 16: 161-66, 2006.
    40. Facchini FS, Saylor KL. A low-iron-available, polyphenol-enriched, carbohydrate-restricted diet to slow progression of diabetic nephropathy. Diabetes, 2003; 52:1204-9.
    41. Facchini FS, Saylor KL. Effect of iron depletion on cardiovascular risk factors: studies in carbohydrate-intolerant patients. Annals New York Academy Science 967: 342-51, 2002.
    42. Brown-Borg HM, Hormonal regulation of aging and life span. Trends Endocrinology Metabolism 14: 151-3, 2003.
    43. Lee SS, Kennedy S, Tolonen AC, DAF-16 target genes that control C. elegans life-span and metabolism, Science 300 (5619):644-7, 2003.
    44. Tatar M, Bartke A, Antebi A, The endocrine regulation of aging by insulin-like signals, Science 299(5611): 1346-51, 2003.
    45. Facchini FS, Hua NW, Stoohs RA, Effect of iron depletion in carbohydrate-intolerant patients with clinical evidence of nonalcoholic fatty liver disease. Gastroenterology 122:931-9, 2002.
    46. Hua NW, Stoohs RA, Facchini FS. Low iron status and enhanced insulin sensitivity in lacto-ovo vegetarians. British Journal Nutrition 86: 515-9, 2001.
    47. Britton RS, Leicester KL, Bacon BR, Iron toxicity and chelation therapy. International Journal Hematology 76: 219-28, 2002.
    48. Anghileri LJ, Soft tissue calcification induced by iron completes, Calcified Tissue International 51: 83-84, 1992.
    49. Anghileri LJ, et al, Cardiotoxicity of parenterally administered iron complexes, Arzneimittelforschung 45: 679-81, 1995.
    50. Anghileri LJ, et al, Liver calcium homeostasis modification by iron: a probably factor in its carcinogenesis. Neoplasma 41: 221-23,1994.
    51. Liu G, Men P, Kenner GH, et al, Age-associated iron accumulation in bone: implications for postmenopausal osteoporosis and a new target for prevention and treatment by chelation. Biometals 19: 245-51, 2006.
    52. Mattson MP, Mattson EP, Amyloid peptide enhances nail rusting: novel insight into mechanisms of aging and Alzheimer’s disease. Ageing Research Review 1(3):327-30, 2002.
    53. Mattson MP, et al, β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. Journal Neuroscience 12: 376–389, 1992.
    54. Lauffer RB, Iron depletion and coronary disease. American Heart Journal 119: 1448, 1990.
    55. Srichairatanakool S, Iron-chelating and free-radical scavenging activities of microwave-processed green tea in iron overload. Hemoglobin 30(2):311-27, 2006.
    56. Sullivan JL, The iron paradigm of ischemic heart disease. American Heart Journal 117: 1177, 1989.
    57. Hallberg L, Does calcium interfere with iron absorption? American Journal Clinical Nutrition 68: 3, 1998.
    58. Walshe JM, Waldenstrom E, Sams V, Abdominal malignancies in patients with Wilson’s disease. Quarterly Journal Medicine 96: 657-62, 2003.
    59. Richard VS, Harris VK, Shankar V, Clinical manifestations and survival pattern of Wilson’s disease, National Medical Journal India 13: 301-3, 2000.
    60. O’Connor JM, Trace elements and DNA damage. Biochemical Society Transactions 29(Pt 2): 354-7, 2001.
    61. Hussain SP, Raja K, Amstad PA, Increased p53 mutation load in nontumorous human liver of Wilson disease and hemochromatosis: oxyradical overload diseases. Proceedings National Academy Science U S A. 97: 12770-5, 2000.
    62. White AR, Cappai R, Neurotoxicity from glutathione depletion is dependent on extracellular trace copper. J Neuroscience Research 71:889-97, 2003.
    63. Finefrock AE, Bush AI, Doraiswamy PM, Current status of metals as therapeutic targets in Alzheimer’s disease, Journal American Geriatric Society 51(8):1143-8, 2003.
    64. Borten O, Liberman A, Tuchweber B, Chevalier S, Ferland G, Schipper HM. Effects of dietary restriction and metal supplementation on the accumulation of iron-laden glial inclusions in the aging rat hippocampus. Biogerontology 5: 81-88 2004
    65. Cass WA, et al, Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys, Neurobiology Aging Jan 25, 2006 online.
    66. Schipper HM, Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Research Reviews 3: 265-301, 2004.
    67. Bomboi G, et al, Correlation between metal ions and clinical findings in subjects affected by Alzheimer’s disease. Annals lst Super Sanita 41: 205-12, 2005.
    68. Sullivan JL. Iron and the sex differences in heart disease risk. Lancet 13:1293–4, 1981.
    69. Martin MB, Reiter R, Pham T, Estrogen-like activity of metals in MCF-7 breast cancer cells, Endocrinology 144: 2425-36, 2003; Wyllie S, Liehr JG, Release of iron from ferritin storage by redox cycling of stilbene and steroid estrogen metabolites: a mechanism of induction of free radical damage by estrogen, Arch Biochemistry Biophysics 346: 180-6, 1997.
    70. Polla AS, et al, Iron as the malignant spirit in successful ageing, Ageing Research Reviews 2: 25-37, 2003.
    71. Ando K, et al, Increased release of free Fe ions in human erythrocytes during aging in the circulation. Free Radical Research 36: 1079-84, 2002.
    72. Mira L, Fernandez MT, Santos M, Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Research 36:1199-208, 2002.
    73. de Groot H, Rauen U, Tissue injury by reactive oxygen species and the protective effects of flavonoids. Fundam Clin Pharmacol 1998; 12: 249-55.
    74. Leopoldini M, et al, Iron chelation by the powerful antioxidant flavonoid quercetin. Journal Agriculture Food Chemistry 54(17):6343-51, 2006.
    75. Zhang Y, Dietary supplementation of baicalin and quercetin attenuates iron overload induced mouse liver injury. European Journal Pharmacology 535 (1-3):263-9, 2006.
    76. Hallberg L, Rossander L, Effect of different drinks on the absorption of non-heme iron from composite meals. Hum Nutrition Applied Nutrition 36:116-23, 1982.
    77. Malik A, Azam S, Hadi N, DNA degradation by water extract of green tea in the presence of copper ions: implications for anticancer properties, Phytotherapy Research 17: 358-63, 2003.
    78. Ivanov V, Carr AC, Frei B, Red wine antioxidants bind to human lipoproteins and protect them from metal ion-dependent and -independent oxidation, Journal Agriculture Food Chemistry 49: 4442-9, 2001.
    79. Belguendouz L, Fremont L, Linard A, Resveratrol inhibits metal ion-dependent and independent peroxidation of porcine low-density lipoproteins, Biochemical Pharmacology 53:1347-55, 1997.
    80. Coudray C, Tressol JC, Feillet-Coudray C, Long-term consumption of red wine does not modify intestinal absorption or status of zinc and copper in rats, Journal Nutrition 130: 1309-13, 2000.
    81. Fremont L, Belguendouz L, Delpal S, Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids, Life Science 64: 2511-21, 1999.
    82. Lanningham-Foster L, Chen C, Grape extract inhibits lipid peroxidation of human low density lipoprotein. Biol Pharm Bulletin 18: 1347-51, 1995.
    83. Kruszewski M, Szumiel I, Sirtuins (histone deacetylases III) in the cellular response to DNA damage–facts and hypotheses. DNA Repair 4: 1306-13, 2005.
    84. Chakraborty S, Roy M, Bhattacharya RK, Prevention and repair of DNA damage by selected phytochemicals as measured by single cell gel electrophoresis. Journal Environmental Pathology Toxicology Oncology 23: 215-26, 2004.
    85. Graf E, Eaton JW, Antioxidant functions of phytic acid. Free Radical Biology Medicine 8: 61-9, 1990.
    86. Fox CH, Eberl M, Phytic acid (IP6), novel broad spectrum anti-neoplastic agent: a systematic review. Complementary Therapy Medicine 10:229-34, 2002.
    87. Franco R, et al, The in vivo survival of human red cells with low oxygen affinity prepared by the osmotic pulse method of inositol hexaphosphate incorporation. Transfusion 30: 196-200, 1990.
    88. Hanson LN, Engelman HM, Alekel DL, et al, Effects of soy isoflavones and phytate on homocysteine, C-reactive protein, and iron status in postmenopausal women. American Journal Clinical Nutrition 84: 774-80, 2006.
    89. Graf E, Eaton JW, Effects of phytate on mineral bioavailability in mice. Journal Nutrition 114: 1192-8, 1984.
    90. Grases F, et al, Phytate acts as an inhibitor in formation of rental calculi. Frontier Bioscience 12: 2580-87, 2007; Grases F, et al, Phytate prevents tissue calcifications in female rats. Biofactors 11: 171-77, 2000.
    91. Grases F, Phytate (Myo-inositol hexakisphosphate) inhibits cardiovascular calcifications in rats. Frontier Bioscience 11: 136-42, 2006.
    92. Jagedeesh S, Banerjee PP, Inositol hexaphosphate represses telomerase activity and translocates TERT from the nucleus in mouse and human prostate cancer cells via the deactivation of Akt and PKCalpha. Biochemical Biophysical Research Communications 349: 1361-67, 2006.
    93. Lanzilli, et al, Resveratrol down-regulates the growth and telomerase activity of breast cancer cells in vitro. International Journal Oncology 28: 641-48, 2006; Fugetta MP, et al, Effect of resveratrol on proliferation and telomerase activity of human colon cancer cells in vitro. Journal Experimental Clinical Cancer Research 25: 189-93, 2006.
    94. Gensler HL, Bernstein H, DNA damage as the primary cause of aging. Quarterly Review Biology 56: 279-303, 1981.
    95. Hanakahi LA, et al, Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102: 721-29, 2000.
    96. Lin MT, Beal MF, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443: 787-95, 2006.
    97. Birch-Machin MA, The role of mitochondria in ageing and carcinogenesis. Clinical Experimental Dermatology 31: 548-52, 2006.
    98. Sastre J, et al, Mitochondrial Damage in Aging and Apoptosis. Annals NY Academy Science 959; 448-51, 2002.
    99. Richter C, Oxidative damage to mitochondrial DNA and its relationship to ageing. International Journal Biochemistry Cell Biology 27: 647-53, 1995.
    100. Trifunovic A, et al, Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417-23, 2004.
    101. Skulachev VP, Longo VD, Aging as a mitochondria-medicated atavistic program: can aging be switch off? Annals New York Academy Science 1057: 145-64, 2005.
    102. Schipper HM, Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Research Reviews 3: 265-301, 2004.
    103. Robb SJ, et al, Influence of calcium and iron on cell death and mitochondrial function in oxidatively stressed astrocytes. Journal Neuroscience Research 55: 674-86, 1999.
    104. Terman A, et al, The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chemical Biological Interactions 163: 29-37, 2006.
    105. Jeijer AJ, Codogno P, Signaling and autophagy regulation in health, aging and disease. Molecular Aspects of Medicine 27: 411-25, 2006.
    106. Massey AC, et al, Autophagic defects in aging: looking for an “emergency exit”? Cell Cycle 5: 1292-96, 2006.
    107. Botti J, et al, Autophagy signaling and the cogwheels of cancer. Autophagy 2: 67-73, 2006.
    108. Garner A, et al, Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress. Free Radical Research 29: 103-114, 1998.
    109. Bergamini E, et al, The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. International Journal Biochemistry Cell Biology 36: 2392-2404, 2004.
    110. Terman A, Catabolic insufficiency and aging. New York Academy Sciences 1067: 27-36, 2006.
    111. Terman A, et al, The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chemical Biological Interaction 163: 29-37, 2006.
    112. Opipari AW Jr, et al, Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Research 64: 696-703, 2004.
    113. Brand MD, Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem Society Symposium 71: 203-13, 2004.
    114. Goh SS, The red wine antioxidant resveratrol prevents cardiomyocyte injury following ischemia-reperfusion via multiple sites and mechanisms. Antioxidant Redox Signaling 9: 101-13, 2007.
    115. Zini R, et al, Effects of resveratrol on the rat brain respiratory chain. Drugs Experimental Clinical Research 25: 87-97, 1999.
    116. Zini R, Resveratrol-induced limitation of dysfunction of mitochondria isolated from rat brain in an anoxia-reoxygenation model. Life Science 71: 3091-108, 2002.
    117. Copani, Inositol hexakisphosphate stimulates 45Ca2+ influx in purified mitochondria from rat liver. Italian Journal Biochemistry 40: 289-94, 1991.
    118. Zhuang H, et al, Potential mechanism by which resveratrol, a red wine constituent, protects neurons. Annals New York Academy Science 993: 276-86, 2003.
    119. Das S, et al, Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFκB. Free Radical Research 40: 1066-75, 2006.
    120. Carey JR, Liedo P, Orozco D, Vaupel JW, Slowing of mortality rates at older ages in large Medfly cohorts. Science 258:427–461, 1992.
    121. Curtsinger JW, Fukui RH, Townsend DR, Vaupel JW, Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science 258:461–463, 1992.
    122. Brooks A, Lithgow GJ, Johnson TE, Mortality rates in a genetically heterogeneous population of Caenorhabditis elegans. Science 263:668–671, 1994.
    123. Vaupel JW, Carey JR, Christensen K, Johnson TE, Yashin AI, Holm NV et al, Biodemographic trajectories of longevity. Science 280:855–860, 1998.
    124. Parsons PA, Survival and longevity improvements at extreme ages: an interpretation assuming an ecological stress theory of aging. Biogerontology November 3, 2006 online.
    125. Rose MR, et al, A revolution for aging research. Biogerontology 7(4):269-77, 2006.
    126. Carey JR, P Liedo P, Orozco D, Vaupel, JW,Slowing of mortality rates at older ages in large medfly cohorts. Science 258: (5081) 457-461, 1992.
    127. Garry PJ, Hunt WC, Baumgartner RN, Effects of Iron Intake on Iron Stores in Elderly Men and Women: Longitudinal and Cross-Sectional Results. Journal of the American College of Nutrition, 19: 262-269, 2000.
    128. Namanjeet Ahluwalia, et al, Iron Status and Stores Decline with Age in Lewis Rats. Journal of Nutrition 130:2378-2383, 2000.
    129. Polla AS, et al, Iron as the malignant spirit in successful aging. Ageing Research Reviews 2: 25-37 2003.
    130. Polla BS, Therapy by taking away: the case of iron. Biochem Pharmacol 57: 1345-49, 1999.
    131. Polla BS, Therapy by taking away: the case of iron. Biochemical Pharmacology 57: 1345-49, 1999.
    132. Usuy C, A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298-301, 2006.
    133. Gredilla R, Barja G, Minireview: the role of oxidative stress in relation to caloric restriction and longevity. Endocrinology 146: 3713-17, 2005.
    134. Wolf G, Calorie restriction increases life span: a molecular mechanism. Nutrition Reviews 64: 89-92, 2006.
    135. Ingram DK, et al, Calorie restriction mimetics: an emerging research field. Aging Cell 5: 97-108, 2006.
    136. Howitz K, et al, Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-96, 2003.
    137. Montignac M, The Miracle of Wine, Montignac Publishing UK, London, 1998.
    138. Cornaro L, Discourses on the sober life, Kessinger Publishing; Facsimile Ed edition (March 1997)
    139. Roth GS, et al, Caloric restriction mimetics: the next phase. Annals New York Academy Sciences 1057: 365-71, 2005.
    140. Sinclair DA, Toward a unified theory of caloric restriction and longevity regulation. Mechanisms Ageing Development 126: 987-1002, 2005.